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It has been recently demonstrated that optical pulses can hold transverse orbital angular momentum (OAM). Generation
of such vortices typically requires bulky optics, and only OAMs that are fully longitudinal or transverse have been
demonstrated until now. Here we investigate a general family of spatiotemporal vortices with arbitrarily oriented OAM
and introduce a compact device for its generation. The device operates by having a transmission nodal line, which is
a topological defect in the wavevector-frequency spectra of the transmission coefficient. We show that the position
and dispersion of the transmission nodal line can be controlled by structural symmetry of the device. By transmitting
a Gaussian pulse through the device, we can generate spatiotemporal vortices with its nodal line and OAM oriented
along any arbitrary direction. This ability to generate a full family of spatiotemporal vortex pulses may find application
in pulse shaping or sensing in the spatiotemporal domain. Our work also provides a novel approach of engineering
topological response functions in photonic crystal slabs. © 2021 Optical Society of America under the terms of the OSA Open

Access Publishing Agreement

https://doi.org/10.1364/OPTICA.426460

1. INTRODUCTION

Optical vortices are electromagnetic wave configurations that carry
phase winding around nodal lines in their field distributions in real
space time (Fig. 1). A prominent example of optical vortices are
beams or pulses that carry longitudinal orbital angular momentum
(OAM) [Fig. 1(b)], where the nodal line is parallel to the direction
of propagation [1]. Optical beams or pulses that carry longitudinal
OAM have been used in applications such as optical trapping [2,3],
super-resolution imaging [4,5], optical communication [6,7], and
quantum key distribution [8].

In addition to beams and pulses that carry longitudinal OAM,
there are emerging interests in studying other nodal line configura-
tions [9–11]. In particular, recent works have demonstrated optical
pulses that carry transverse OAM [12,13], which possesses a nodal
line perpendicular to the direction of propagation [Fig. 1(c)]. At
present, generating such transverse OAM requires sophisticated
optical systems that perform wavefront and spectral shaping.
To facilitate further studies of optical vortices, it is important to
develop alternative ways for generation of optical vortices that are
compact and versatile.

In this paper, we show that an optical pulse with a nodal line
in real space time can in general be created by passing a standard
Gaussian pulse through a photonic crystal slab structure that
possesses a corresponding nodal line structure in its transmission
function t(kx , ky , ω) [Fig. 1(e)]. Here ω denotes the frequency.
The pulse is assumed to be propagating along the z direction. kx

and ky are wavevector components in the x − y plane perpen-
dicular to the z axis. As an illustration we introduce photonic

crystal slab structures for the generation of a pulse with transverse
OAM, as well as OAM with arbitrary orientations with respect
to the propagation direction. Our work points to the significant
opportunities for designing nanophotonic structures in the control
of optical vortices, and it also highlights the important conceptual
connection between the topology of electromagnetic fields in real
space and time as well as the topology of the response function in
the reciprocal space of wavevector and frequency.

2. OPTICAL VORTICES AND TRANSMISSION
NODAL LINES

We consider a optical pulse with a nodal line in real space time
(x , y , t). We assume the pulse has a uniform polarization, so its
amplitude can be described by a complex scalar E . At a given plane
of constant z, the field is assumed to be

E (x , y , t)= (Ax x + A y y sin α + A y c t cos α)

× exp

(
−
1ω2t2

4
−
1k2

x x 2

4
−
1k2

y y 2

4

)
. (1)

Here c is the speed of light;1ω,1kx , and1ky are widths in fre-
quency and wavevectors of the pulse. We assume A y is real and Ax

is complex with a nonzero imaginary part. Therefore, the nodal
line lies in the y − t plane with x = 0, and has a 2π phase winding
around it. α is the angle of the nodal line relative to the y axis, and
it takes value in (−π/2, π/2]. We note that with proper choice of
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Fig. 1. Schematic of spatiotemporal vortices and its generation method. (a) Input Gaussian pulse. (b)–(d) Various spatiotemporal vortices. The torus
shows its iso-intensity surface, and its nodal line in real space time is shown with the red line. All pulses propagate along z. (b) Conventional vortex pulse
carrying longitudinal OAM. (c) Pulse carrying transverse vortex and transverse OAM. (d) Pulse with its vortex and OAM pointing at an arbitrary direction.
(e) Device for generating the transmission function shown in (f )–(h). It consists of two polarizers (which can itself be a combination of linear polarizers and
wave plates, colored in blue) and a photonic crystal slab in the middle (colored in yellow). (f )–(h) The transmission function t(kx , ky , ω) needed to trans-
form a Gaussian pulse into the corresponding spatiotemporal vortex in each column. One slice represents its amplitude, and another slice represents phase.

the coordinate system, Eq. (1) can be used to describe a nodal line
with arbitrary orientation.

To see how such pulse can be generated, we transform the field
in Eq. (1) into the Fourier domain:

E (kx , ky , ω)= N(Cx kx +C y ky sin β −C y
ω−ω0

c
cos β)

× exp

[
−
(ω−ω0)

2

1ω2
−

k2
x

1k2
x
−

k2
y

1k2
y

]
. (2)

We have used the e iωt−ik·r convention. ω0 is the carrier frequency

of the pulse. N = 4
√

2i
1ω1kx1ky

. The parameters Cx , C y , and β are

given by

Cx =
Ax

1k2
x
, (3)

C y = A y

√√√√( sin α

1k2
y

)2

+

(
c 2 cos α

1ω2

)2

, (4)

tan β =
1ω2

1k2
y c 2

tan α. (5)

We see here that C y is real and Cx is complex with a nonzero imagi-
nary part. β characterizes the orientation of the nodal line of the
pulse in the wavevector-frequency space. From the Fourier space
representation of the spatiotemporal vortex, we see that such vortex
can be generated by passing a Gaussian pulse through a system S
that has a transmission function

tS(kx , ky , ω)∝Cx kx +C y ky sin β −C y
ω−ω0

c
cos β (6)

in the lowest order of Taylor expansion. See Fig. 1(a) for a schematic
of such generation process. This transmission function has a trans-
mission nodal line in the frequency-wavevector space, with a nodal
line dispersion ωNL =ω0 + c ky tan β. Around the transmission
nodal line there is a 2π phase winding.

In Eq. (1), a pulse with a longitudinal OAM has α = π/2
[Fig. 1(b)]. To generate such a pulse by transmission through an
optical system, based on Eq. (5), we see β = π/2. The desired

transmission function contains a vortex in the kx − ky plane,
and it is independent of frequency [Fig. 1(f )]. Such transmission
function is recently realized experimentally [14]. Also in Eq. (1),
a pulse with a purely transverse OAM has α = 0 [Fig. 1(c)]. From
Eq. (5) we have β = 0. The transmission function thus exhibits a
vortex in the ω− kx plane, and it is independent of ky [Fig. 1(g)].
In general, to generate a pulse with nodal line oriented along an
arbitrary direction as characterized by the angleα, there is a unique
β in (−π/2, π/2] that satisfies Eq. (5). Therefore, we simply
need to design a transmission function with the prescribed β. A
schematic of the pulse and corresponding transmission function is
shown in Figs. 1(d) and 1(h). As an additional note, an arbitrarily
oriented nodal line also gives rise to arbitrarily oriented orbital
angular momentum L . For the pulse in Eq. (1), L lies in the y − z
plane, and its angleγ with respect to the y axis is given by

tan γ =
L z

L y
=
(1k2

x +1k2
y )1ω

2/c 2

(1k2
x +1ω

2/c 2)1k2
y

tan α. (7)

Detailed derivation of Eq. (7) is provided in Supplement 1.
Our work differs from [15–18], which also investigates nodal

lines in light field. Here we consider a polychromatic field forming
a pulse in time and the nodal line is propagating with the pulse,
whereas these previous works involve monochromatic field and the
nodal line is stationary in space. Our nodal line exists in (2+ 1)D
space time (x , y , t), while in these previous works the nodal line
exists in 3D space (x , y , z).

3. DESIGNING TRANSMISSION NODAL LINES IN
PHOTONIC CRYSTAL SLAB DEVICES

Now we demonstrate how the transmission function in Eq. (6)
can be realized and how its nodal line dispersion can be controlled.
We start with a geometric argument to show that nodal lines are
generic features of a complex function in three dimensions, such
as the transmission function tS(kx , ky , ω) here. A nodal line of tS

simultaneously satisfies the equations Re(tS)= 0 and Im(tS)= 0.
Each equation is a surface in the three-dimensional kx − ky −ω

space, and the intersection of these two surfaces is generically a line.
Such nodal line generically has a nontrivial phase winding around
it. This can be seen by locally expanding tS around its zero.

https://doi.org/10.6084/m9.figshare.14688834
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Fig. 2. Photonic crystal slab design for generating pulses with trans-
verse OAM. (a) The geometry of the photonic crystal slab, with incident
pulse indicated by the red arrow. The yellow part represents material
with permittivity ε= 12. The grating cross section in the x − z plane is
shown on the top left inset. The dimensions are w1 = 0.4a , w2 = 0.2a ,
h1 = 0.3a , and h2 = 0.3a , where a is the periodicity. (b) The trans-
mission function of the photonic crystal slab for y -polarized input and
output waves. Slices are taken at ky =−0.12, 0.0, 0.12 for phase and
ky =±0.06 for amplitude. The red line represents the transmission nodal
line.ω and kx , ky are in units of 2πc/a and 2π/a , respectively.

We realize the transmission function tS(kx , ky , ω) using polari-
zation selected transmission through a photonic crystal slab as
illustrated in Fig. 1(e). In this setup, we send a pulse with a uniform
polarization, as described by a Jones vector |E in〉, into the photonic
crystal slab. The pulse transmitted through the slab is then passed
through a polarizer selecting an output polarization as descrbied by
a Jones vector |Eout〉. The transmission of a photonic crystal slab
can be described by a Jones matrix J (kx , ky , ω). The transmission
function of this setup is then [19,20]

tS(kx , ky , ω)= 〈Eout|J (kx , ky , ω)|E in〉. (8)

To design a transmission nodal line, the first step is to achieve
a zero at a particular transverse wavevector and frequency
(kx0, ky 0, ω0). The plane wave at this transverse wavevector
and frequency will have polarization J (kx0, ky 0, ω0)|E in〉 after
passing through the photonic crystal slab. We can now choose
the output polarizer, selecting a polarization orthogonal to
J (kx0, ky 0, ω0)|E in〉, such that this plane wave does not pass
through the system. This is known as the cross-polarization condi-
tion [14]. Once we achieve tS(kx0, ky 0, ω0)= 0, by the geometric
argument above, we expect that there is a nodal line of tS that passes
through (kx0, ky 0, ω0). This method allows us to create a trans-
mission nodal line anywhere in the (kx , ky , ω) space. We provide a
numerical demonstration of such construction in Supplement 1.

To gain more control over the orientation of the transmission
nodal line, we exploit symmetries in the photonic crystal slab.
This allows us to design transmission nodal lines that lie on high
symmetry planes of the system. In the rest of the paper, we discuss
two designs with different symmetries that controls the nodal line
orientation in different ways.

In our first example, we aim to generate a transmission nodal
line along the ky axis. This can produce a pulse with a transverse
OAM. The transmission function can be achieved by using a grat-
ing structure which is periodic in the x direction with periodicity
a as shown in Fig. 2(a). The input and output polarizer are both
chosen to be selecting y -polarized light for transmission. We sim-
ulate the transmission coefficients of this configuration [21] and
plot the slices of the function tS(kx , ky , ω) in Fig. 2(b). We see
the existence of a nodal line that is symmetric in ky , so at 0 point
(kx = 0, ky = 0) the nodal line is exactly along the ky direction.

There are three main considerations behind this design. First,
for normal incidence, the transmission through the photonic

crystal slab has a zero at some frequencyω0. Such zero is guaranteed
by the property of a guided resonance at 0 [22]. By the geometric
argument above, this allows the existence of a nodal line passing
through (kx = 0, ky = 0, ω0). Second, we have chosen a structure
with y = 0 mirror plane. This mirror plane symmetry constrains
the transmission function. Here the input and output polarizations
are both along y , and a mirror operation (My ) with respect to the
y = 0 plane results in

My |E in(out)〉 =−|E in(out)〉, (9)

My J (kx , ky , ω)My = J (kx ,−ky , ω). (10)

Here Eq. (10) holds since the y = 0 plane is a mirror plane of the
structure. Using these relations we get

tS(kx , ky , ω)= tS(kx ,−ky , ω). (11)

This symmetry allows the zeros in transmission to be symmetric
in ky . Thus, near the 0 point, the line of zero transmission can be
either perpendicular or parallel to the ky = 0 plane. To constrain
the nodal line to be along the ky direction, we need to ensure that
there is no zero in the transmission function for ky = 0 and kx 6= 0.
This leads us to the third consideration: the cross section choice of
the grating structure [Fig. 2(a), inset]. We know that the guided
resonances in gratings and photonic crystal slabs have Fano line
shape in their transmission spectra [23]. It was shown that for grat-
ings with cross sections being symmetric in either x or z, the guided
resonances at kx 6= 0 are guaranteed to have zeros in their trans-
mission spectrum as part of the Fano line shape [24]. Therefore,
we choose a grating cross section where neither x nor z mirror
symmetry exists [Inset of Fig. 2(a)]. With these considerations, we
indeed achieve a nodal line oriented along ky near the 0 point as
already shown in Fig. 2(b). Away from 0, the transmission nodal
line curves away from any high symmetry plane but still remains
symmetric about ky .

To demonstrate the generation of a pulse with transverse OAM
using the structure in Fig. 2(a), we consider an incident Gaussian
pulse toward the system in the normal direction. We choose
1ω= 1.5× 10−4

· 2πc/a and 1kx =1ky = 1× 10−3
· 2π/a ,

and ω0 = 0.52200× 2πc/a . The choices of parameters can be
quite arbitrary, except that the center wavevector and frequency
should be aligned with the zero in transmission at 0. For larger
1k and 1ω, we expect more distortions in the pulse, since the
lowest order Taylor expansion of Eq. (6) is no longer accurate.
The field envelope and phase are shown in Fig. 3 at different cross
sections. Combining the images in Figs. 3(a) and 3(b), we see that
the field on the x − t plane has a doughnut-shaped amplitude
distribution with phase singularity at the center. In Figs. 3(c) and
3(d), the field on the y − t plane shows that the nodal line lies
along the y direction, and the phase variation across the nodal
line is π . We numerically calculate the OAM carried by this pulse.
The values are (L x , L y , L z)= (0.00, 3.39, 0.00)~ per photon.
This indicates that our device can indeed generate pulses carrying
transverse OAM. The angular momentum value here is not quan-
tized to integers of ~ because the pulse here, if a snapshot is taken
at given time, is not cylindrically symmetric in the x − z plane.
Therefore, the field contains “higher-order harmonics” in the form
exp(ilθ), where l is an integer larger than 1 and θ is the angle in the
x − z plane. This leads to a nonquantized value of OAM. Detailed
calculation and discussion of OAM are in Supplement 1.
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Fig. 3. Numerical simulation of the pulse transmitted through the
structure in Fig. 2(a). (a) Amplitude and (b) phase for the pulse envelope
at y = 0. (c) Amplitude and (d) phase for the pulse envelope at x = 0.
The nodal line lies parallel with the y axis, through x = 0. Amplitudes are
normalized to the maximum value in the pulse.

This design can generate not only pulses with transverse OAM
but also pulses with OAM along a tilted direction. This can be
achieved by tilting the photonic crystal slab about the x and y
axes. In this case, a pulse propagating along z is incident upon the
photonic crystal slab at an oblique angle. The nodal line dispersion
probed by the input pulse, represented by β, is neither 0 nor π/2.
However, because the nodal line moves away from the kx = 0 plane
away from the 0 point, we have to control two tilting angles of
the photonic crystal slab to find the operating point. To reduce
the complexity of the control required in order to generate OAM
along an aribitrary tilted direction, in our second design, we aim to
find a configuration where the entire nodal line is pinned on a high
symmetry plane. In this case, controlling a single tilting angle of the
photonic crystal slab allows us to move the operation point along
the nodal line, to generate a pulse with an arbitrary β parameter in
Eq. (2).

In our second design we consider a photonic crystal slab that
is symmetric in y and z, and choosing the input to be y polarized
and the output to be left circularly polarized (LCP). A representa-
tive structure is shown in Fig. 4(a). The structural symmetry and
polarization choices results in the nodal line of the transmission
function being pinned on the ky = 0 plane. The argument is as
follows: With the y mirrror symmetry, the guided resonances in the
slab at kx 6= 0 and ky = 0 can be classified as even and odd modes
with respect to the y mirror operation and a y -polarized input
only couples to the odd mode. Therefore, this structure at kx 6= 0
and ky = 0 can be described by a two-mode four-port coupled
mode model [25], with the two modes being at ±kx and the four
ports being the plane waves at ±kx on either side of the slab. See
Supplement 1 for a graphical illustration. Using the z mirror sym-
metry and reciprocity, we can see that the coupling constants from
each of the resonant modes to each of the ports are all equal. In this
case, the transmission of y -polarized light through the photonic
crystal slab are guaranteed to have zeros in the Fano lineshape.
Therefore, we can generate a line of zeros in transmission that is
pinned on the ky = 0 plane. To ensure a 2π phase winding around
such zero, we choose the output polarization |Eout〉 to be one of the
circular polarization, in our case the left circular polarization. This
ensures the transmission coefficients has no symmetry with respect
to ky . If we were to choose y or x polarization at the output, the

Fig. 4. Photonic crystal slab design for symmetry constrained nodal
line. (a) Grating sturcture with correct symmetry to pin the transmission
nodal line on the ky = 0 plane. Normal incident pulse is denoted by
the red arrow. (b) Inverse designed dielectric pattern for near isotropic
transmission vortex. In layer A, the black part represents ε = 12 and the
white part represents ε = 1. In layer B, the black part represents ε = 12
and the white part represents ε = 2.3. (c) 3D visualization of inverse
designed unit cell, composed of ABA layers. The periodicity is a for
both the x and y directions. Layer A has thickness 0.113a , and layer B
has thickness 0.115a . The thickness is also chosen by the optimization
algorithm. (d) Log amplitude of transmission of y -polarized input, LCP
output for the structure in (c). We see the zero of the transmission lies on
the ky = 0 plane. (e) The phase of the transmission coefficient. The red
line represents the nodal line, with aπ phase difference on either side.

transmission coefficients would be symmetric or antisymmetric in
ky , which would not result in a 2π phase winding.

In this design, reciprocity guarantees the transmission nodal
line to be symmetric in kx . To see this, notice that for y -polarized
plane waves with kx 6= 0 and ky = 0, due to the mirror symmetry
along y , the plane wave does not go through polarization con-
version. It remains polarized in the y direction after transmitting
through the photonic crystal slab, before passing through the out-
put polarizer. In this case of ky = 0, the output polarizer modifies
the transmission coefficient by a constant factor that is independ-
ent of kx in the paraxial limit. Using reciprocity together with z
mirror symmetry, we see tS(kx , ky = 0, ω)= tS(−kx , ky = 0, ω).
Thus, the transmission nodal line, which lies in the ky = 0 plane, is
symmetric in kx .

The symmetry and reciprocity argument above guarantees the
existence of a nodal line in theω− kx plane. But the detailed shape
of the phase winding around the nodal line depends on the details
of the structure. We numerically calculate the transmission coef-
ficients of the grating structure in Fig. 4(a). Its transmission nodal
line lies on the ky = 0 plane, but the phase winding around it is very
anisotropic. The results are shown in Supplement 1. To generate
a more isotropic vortex, we use a topology optimization method
[21] that maintains z mirror and y mirror symmetry throughout
the optimization process. (The details of the optimization method
are found in Supplement 1.) An optimized structure is shown in
Fig. 4(b) for in-plane patterns of a unit cell and in Fig. 4(c) for a
3D rendered unit cell. The structure shown here is a output of
the optimization algorithm with a particularly choice of initial

https://doi.org/10.6084/m9.figshare.14688834
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Fig. 5. Numerical simulation of pulse transmitted from the structure
in Fig. 4(c). (a) Amplitude and (b) phase for the pulse envelope at y = 0.
The nodal line of the pulse lies in this plane, indicated by the absence of
the vortex in phase. (a) Amplitude and (b) phase for the pulse envelope at
x = 0. Amplitudes are normalized to the maximum value in the pulse.

structure. The optimized structure can vary with difference choices
of the initial structure.

The complex transmission coefficients with y -polarization
input and LCP output are shown in Figs. 4(d) and 4(e). We see the
nodal line is indeed pinned on the ω− kx plane with ky = 0 and
forms a nodal ring. Theπ phase difference of the phase on different
side of the nodal line is a strong indication that the nodal line is
exactly on the ky = 0 plane. In the ω− ky plane, the transmission
zeros are isolated points and has 2π phase winding around the
zeros.

To generate a pulse with tilted OAM, we choose an input
pulse with 1kx = 2× 10−3

· 2π/a , 1ky = 1× 10−3
· 2π/a ,

1ω= 1.5× 10−4
· 2πc/a , and ω0 = 0.63902× 2πc/a .

We rotate the photonic crystal slab around the y axis such
that a pulse propagating along the optical axis corresponds
to kx ′ = 0.02× 2π/a in the coordinate of photonic crystal
slab. Around this point, the transmission function of the slab
has a tilted nodal line in (kx , ky , ω) space, with a dispersion
dω/dkx = c tan β ≈ 0.054c . The parameters of the pulses are
chosen so that the pulse probes only a local region around kx ′ where
the lowest order Taylor expansion of Eq. (6) is valid. According
to Eq. (5), the output pulse will be a spatiotemporal vortex, with
its nodal line tilted α= 84.1◦ relative to the x axis, in the x − z
plane. This is verified by numerical calculation of the output
pulse, shown in Fig. 5. In Figs. 5(a) and 5(b), we see the nodal
line lies completely in x − t plane, and the extracted slope of
the nodal line is 0.11c , which agrees well with the prediction
cot α = 0.10. The y − t plane cross section of the simulated
pulse is shown in Figs. 5(c) and 5(d). We clearly see that it con-
tains a vortex. The orbital angular momentum for this pulse is
(L x , L y , L z)= (2.38,−0.001, 0.61)~ per photon. The orien-
tation of L is characterized by γ= 14◦, which agrees well with
Eq. (7).

4. DISCUSSION AND CONCLUSION

In our second example, the nodal line forms a loop. Therefore, for
any nodal line orientation α in Eq. (1), there exist an orientation
of the photonic crystal slab that can be used to generate pulse with
such nodal line orientation. This allows us to continuously tune

the nodal line and the OAM of the pulse, from being longitudinal
to transverse, and also along any arbitrary direction. In addition,
we can rotate the whole device around the z axis to achieve any
azimuthal angle we want for the nodal line and OAM. Therefore,
our design is general for generating an entire family of spatiotem-
poral optical vortices carrying OAM. Our device is much more
compact than what was used in [12,13] to generate a transverse
OAM.

Throughout the paper, we assumed paraxial fields. In the case
where such approximation breaks down, a longitudinal field
component arises and may lead to various spin-orbit coupling phe-
nomena [26,27]. The vortices we demonstrated have unity charge.
Higher-order topological charges can be designed using compact
photonic structure in principle. Alternatively, we can also achieve
higher-order charges by cascading the device proposed here.

We briefly discuss the experimental considerations of the
proposed scheme. In all our calculations above, we considered a
Gaussian pulse that is both transversely and longitudinally at focus,
at the position of the device. However, our device in fact can be
placed at any longitudinal position before or after the focus, since
both our device and vacuum propagation conserves the transverse
momentum [28]. The demonstrated pulse dimensions, in both
transverse and longitudinal directions, are similar to what has been
demonstrated experimentally [12–14], and the interferometric
approach in [12–14] can be used to reveal the phase structure of
the pulse. Our method requires alignment of the pulse central
frequency to the frequency of the transmission nodal line. This
alignment is experimentally achievable [29]. For fabrication of
the device, the main concern may be the smallest feature size in
the structure obtained by inverse design. One may address this
concern by imposing a constraint on the minimum feature size in
the inverse design algorithm [30,31].

In conclusion, we investigated properties of spatiotemporal
optical vortex pulses carrying nodal line along arbitrary directions
and showed that it carries OAM along an abitrary orientation with
respect to its propagation direction. We show that such vortex
pulses can be generated by using polarization selected transmission
of photonic crystal slabs that host transmission nodal lines in 3D
wavevector-frequency space. By having different symmetries in
the photonic crystal slab, the direction of such transmission nodal
line can be pinned to be along some high symmetry direction or
high symmetry plane, which simplifies the control that is required
to generate spatiotemporal optical vortex pulses. Our design is
much more compact and more versatile than previous realizations
that generate transverse OAM. This device represents an impor-
tant step forward in advancing fundamental studies and practical
applications of spatiotemporal optical vortex pulses.
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