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We demonstrate a non-Hermitian topological effect that is characterized by having complex eigenvalues
only in the edge states of a topological material, despite the fact that the material is completely uniform.
Such an effect can be constructed in any topological structure formed by two gapped subsystems, e.g., a
quantum spin-Hall system, with a suitable non-Hermitian coupling between the spins. The resulting
complex-eigenvalued edge state is robust against defects due to the topological protection. In photonics,
such an effect can be used for the implementation of topological lasers, in which a uniform pumping
provides gain only in the edge lasing state. Furthermore, such a topological lasing model is reciprocal and is
thus compatible with standard photonic platforms.
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The hallmark of an electric topological insulator is the
striking contrast between its edge and its bulk character-
istics [1–3]. There, the bulk is in a gapped insulating phase
with a band structure having a nontrivial topology. As a
result of such a nontrivial topology, the system supports
gap-spanning edge states that carry charge or spin currents,
and hence the edge is metallic [4–10]. Similar contrast
exists for many photonic topological systems as well
[11–29].
Most of the initial works on topological electronic or

photonic systems assume a Hermitian Hamiltonian. On the
other hand, there has been significant recent interest in
exploring the topological edge states of non-Hermitian
systems where gain and/or loss are present, due to their
potential applications in wave control, information process-
ing, and robust lasing [30–56]. For these applications, it
would be important to be able to independently control the
modal gain on the edge, so that the bulk does not interfere
with the edge’s functionality. In this Letter, we report such a
non-Hermitian contrast between the bulk and edge: under a
uniform pumping throughout the structure, the bulk shows
entirely real eigenspectra, while only the edge shows gain
and loss as guaranteed by the topology of the bulk. We refer
to such a contrast as the topological edge-gain effect. Here,
the bulk is in the parity-time (PT )-exact phase protected by
a topological gap, while the gapless edge states exhibit gain
through a thresholdless PT phase transition [57–69]. We
show that such an effect can be realized in any topological
systems that consist of two gapped subsystems, regardless
of the specific design, lattice, or any additional symmetry.
As an example application, such a scheme points to a new
route towards topological lasers [12,49,50,52,70–79], since

our approach is explicitly reciprocal, in contrast to existing
theoretical models underlying recent experimental develop-
ments. It demonstrates that topological lasing is intrinsi-
cally compatible with reciprocity and hence with standard
integrated photonic platforms. Furthermore, since modal
gain only occurs at the edge under uniform pumping, the
selective pumping required in previous works is relieved in
our scheme.
It should be emphasized that this work is demonstrating

the edge-gain effect for high dimensional systems and the
physics differs from the edge-gain effect in a 1D structure
[56,78,80,81]. In the latter, the edge is essentially one point
and is not associated with any edge transport or robustness
to edge truncation. In contrast, the edge-gain effect in
higher dimensions encloses richer physics related to trans-
port and PT symmetry, such as robustness to edge defects,
superluminal and zero-group velocities, exceptional points,
etc. These features are important for many applications
such as robust lasers [11–14]. Moreover, the scheme to
realize the 1D edge gain does not apply to higher
dimensions either [38,56]. Our result here is conceptually
novel and is of interest in a broader range of applications.
Model.—To illustrate the basic idea, we consider a

concrete model as illustrated by the following Hamiltonian:

H ¼ t
X
hiji

c†i cj þ iλso
X
⟪ij⟫

vijc
†
i s

zcj þ iγ
X
i

ρic
†
i s

xci: ð1Þ

This Hamiltonian describes interacting spins on a honey-
comb lattice, as is depicted in Fig. 1(a). It is based on the
Kane-Mele quantum spin-Hall (QSH) model [4,5]. The first

PHYSICAL REVIEW LETTERS 125, 033603 (2020)

0031-9007=20=125(3)=033603(6) 033603-1 © 2020 American Physical Society

https://orcid.org/0000-0003-0307-2184
https://orcid.org/0000-0002-6064-4356
https://orcid.org/0000-0002-2154-8417
https://orcid.org/0000-0002-6699-1973
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.033603&domain=pdf&date_stamp=2020-07-14
https://doi.org/10.1103/PhysRevLett.125.033603
https://doi.org/10.1103/PhysRevLett.125.033603
https://doi.org/10.1103/PhysRevLett.125.033603
https://doi.org/10.1103/PhysRevLett.125.033603


and the second terms in Eq. (1) are the nearest and second
nearest neighbor couplings in the Kane-Mele model, where
t and λso are the respective coupling strengths. ci ¼
ðci↑; ci;↓Þ is the annihilation operator for the two spins
on site i. vij ¼ �1, depending on the orientation of the two
nearest neighbor bonds going from i to j. The Pauli
matrices si operate on the spin subspace. The third term
in Eq. (1), which is added in our model, describes a non-
Hermitian coupling between the spins [39]. Here γ is the
coupling strength, ρi ¼ �1, depending on the sublattice
index. The non-Hermitian coupling is introduced on each
site uniformly.
In the momentum space, the Hamiltonian in Eq. (1) is

block diagonalized as

h ¼ d1Γ1 þ d12Γ12 þ d15Γ15 þ iγΓ13 ¼
�

h↑ iγσz

iγσz h↓

�
;

ð2Þ

where the first three terms form the original Kane-Mele
Hamiltonian, i.e., hKM ¼ d1Γ1 þ d12Γ12 þ d15Γ15. They
generate the diagonal blocks in Eq. (2), where h↑;↓ are
the uncoupled Haldane Hamiltonians for each spin. We use
the same representation for the Dirac Γ matrices as in
Ref. [5], which is reproduced here: Γð1;2;3;4;5Þ ¼
ðσx ⊗ I; σz ⊗ I; σy ⊗ sx; σy ⊗ sy; σy ⊗ szÞ, and the com-
mutators are defined as Γab ¼ ½Γa;Γb�=ð2iÞ. Here σi

operates in the sublattice space. It follows that
Γ12 ¼ −σy ⊗ I, Γ15 ¼ σz ⊗ sz, and Γ13 ¼ σz ⊗ sx. The
expressions for the coefficients are d1 ¼ tð1þ 2 cos kx
=2 cos

ffiffiffi
3

p
ky=2Þ, d12 ¼ −2t cos kx=2 sin

ffiffiffi
3

p
ky=2, d15 ¼

λsoð2 sin kx − 4 sin kx=2 cos
ffiffiffi
3

p
ky=2Þ, where we have set

the nearest neighbor distance to 1 [5]. The fourth term in
Eq. (2) is the non-Hermitian addition to the Kane-Mele
Hamiltonian. It corresponds to the off-diagonal blocks in
the matrix of Eq. (2).
To understand the effect of the non-Hermitian couplings,

we first note that with a zero coupling strength γ, our model
reduces to that of the Kane-Mele. There, the two spins are
decoupled, and the eigen spectrum is doubly degenerate
with a bulk topological gap, as is shown in Fig. 1(b). The
added term residing on the off-diagonal blocks in the
matrix of Eq. (2) couples the two spins. However, it can be
shown that such a non-Hermitian coupling does not couple
the two degenerate bulk states on the same side of the gap
[82]. Instead, it only couples two states of different spins on
the opposite sides of the gap. After we switch on the non-
Hermitian coupling, the system preserves a PT symmetry,
where P ¼ σx ⊗ I is the spatial inversion, and T ¼ I ⊗
sxK0 is the Bosonic time reversal operator with K0 being
the complex conjugation. To see the implication of this, in
Figs. 1(c)–1(f) we plot the energy bands after we switch on
the non-Hermitian coupling. With a small coupling strength
of γ < 3

ffiffiffi
3

p
λso, the bulk gap remains, and the entire system

is in the PT -exact phase, where the eigenenergies of all the
bulk bands are real. With increased coupling strength γ, the
energies of the modes at the upper and lower gap edge
approach each other. With a larger coupling of γ > 3

ffiffiffi
3

p
λso,

the bulk gap closes as the eigenenergies of the upper and
lower bands become complex conjugate pairs in the
vicinity of K and K0 points enclosed by exceptional rings.
The system bulk thus undergoes a PT phase transition,
where the eigenstates exhibit gain and loss.
The situation at the edge is qualitatively different from

that of the bulk. In Fig. 2 we show the calculated band
structure of this model in a semi-infinite stripe geometry
with the zigzag boundary. Before the non-Hermitian
couplings are applied, the eigen spectrum reduces to that
of the original Kane-Mele model featuring a pair of gapless
edge states, as is shown in Fig. 2(a). For a non-Hermitian
coupling of γ < 3

ffiffiffi
3

p
λso, the bulk bands are in the PT -

exact phase without gain or loss due to the nonzero bulk
gap, as discussed above. However, the gapless edge states

(a) (b)

(d)(c)

(e) (f)

FIG. 1. (a) A schematic of the non-Hermitian QSH model. For
convenience, we draw the lattices of the two spins in two layers.
The added non-Hermitian couplings are indicated by the red
arrows. The calculated real [(b), (c), and (e)] and imaginary [(d)
and (f)] parts of the bulk band structures are shown. Here
the nearest and next nearest neighbor coupling strengths are
set to t ¼ 1 and λso ¼ 0.05, respectively. γ ¼ 0 for (b), γ ¼
0.9 × 3

ffiffiffi
3

p
λso for (c) and (d), and γ ¼ 3.0 × 3

ffiffiffi
3

p
λso for (e)

and (f).
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can always enter the PT -broken phase starting from the
degenerate crossing point, in a region between two excep-
tional points, as is shown in Figs. 2(c) and 2(d). Thus,
modal gain and loss only appear on the edge but not in the
bulk, showing the topological edge-gain effect. Dynamics
of the edge bands in the vicinity of the crossing point can be
studied with an effective 2 × 2 Hamiltonian, and some
details are given in the Supplemental Material [82].
In our model, the coupled edge states inherits the

robustness against disorder from the edge states in a regular
QSH system [4–7]. In the latter, a defect introduced on the
edge will not cause reflection or localization as long as it
does not flip the spins. This can be seen in Fig. 3a, where
the edge state is extensively distributed in spite of a missing
site on the edge. In our model, the non-Hermitian inter-
action induces a coupling between the spins. However,
since the non-Hermitian coupling is uniformly distributed
over the entire structure, the eigenstate consists of an
admixture of the up and down spin eigenstates of a
Hermitian QSH system. Consequently, the edge states of
our non-Hermitian system carry over the robustness against
order, as is observed in Fig. 3(b).
Such robustness against disorder has been exploited in

the design of topological lasers, as it may help with
suppressing the modal competition for better single-mode
performance [12,49,50,52,70–79]. However, previous
approaches to topological lasers are based on nonreciprocal
models, which is challenging to implement in optoelec-
tronic platforms. In contrast, our construction explores
topological effects in a time-reversal invariant setting,
which is compatible with standard photonic platforms such
as photonic crystals or coupled ring resonator arrays.
Moreover, with a uniform pumping everywhere in our

system, only the edge states have gain and thus can lase,
while the entire bulk has zero gain. This is in contrast to
previous works on topological lasers, where a spatially
selective pumping scheme is usually required to ensure that
only the edge state lases.
General recipe.—The topological edge-gain effect can be

constructed in any QSH-like systems containing four bands
or more, without the need of any additional symmetries such
as time reversal or spatial inversion [82]. For a QSH system
with time reversal and inversion symmetries, denoting h↑ðkÞ
and h↓ðkÞ as the Hamiltonians of the two spins in the
momentum space, the following form of a non-Hermitian
Hamiltonian

H¼
�

h↑ðkÞ f1ðkÞκðkÞ
f2ðkÞκðkÞ h↓ðkÞ

�
; κðkÞ¼h↑ðkÞ−h↓ðkÞ; ð3Þ

provides the topological edge-gain effect, with arbitrary
complex functions of f1ðkÞ and f2ðkÞ, given that
f1ðkÞf2ðkÞ is real. It can be shown that such a
Hamiltonian satisfies pseudo-Hermiticity, which is consid-
ered as a generalization of PT symmetry [82,84–87]. With a
non-Hermitian coupling strength that does not close the bulk
gap, the bulk states remain without gain or loss, whereas
the edge states always exhibit gain thorough a thresholdless
phase transition. In our examplemodel above, κ ¼ 2d15ðkÞsz,
and we have chosen f1ðkÞ ¼ f2ðkÞ ¼ iγ=d15ðkÞ.

(a) (b)

(d)(c)

FIG. 2. Calculated real [(a) and (c)] and imaginary [(b) and (d)]
part of the bands in a stripe with zigzag boundary. A schematic of
the shape is shown in the inset of (b), with 30 hexagonal cells in
the finite direction. γ ¼ 0 for (a) and (b), and γ ¼ 0.2 × 3

ffiffiffi
3

p
λso

for (c) and (d). The edge bands are colored in red while those of
the bulk are in blue.

(a)

(b)

spin up spin down

spin up spin down

defect

FIG. 3. Calculated wave functions of the model in Eq. (1) in a
finite structure. (a) The eigenenergy spectrum without non-
Hermitian couplings, and the wave function of the spin-up
midgap edge state. The structure is a triangle with a defect on
an edge. Degenerate energies in the spectrum are offset for visual
clarity. The arrows mark the edge state that is plotted. The up-spin
and down-spin components of the edge state are shown on the
right. (b) The eigenenergy spectrum with non-Hermitian coupling
and the wave function of the edge state with gain. Parameters
used for this simulation: t ¼ 1, λso ¼ 0.2, γ ¼ 0.2 × 3

ffiffiffi
3

p
λso.
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Several well-known QSH models do have inversion
symmetry, including the Kane-Mele model discussed
above, the Bernevig-Hughes-Zhang model discussed in
the Supplemental Material [6,7,82], and the model of
magnetic flux on a lattice discussed in the following.
Implementation by coupled ring optical resonators.—

Here we discuss an implementation of our model in
coupled-ring optical resonator arrays. The structure is
shown in Fig. 4, which is based on that studied in
Refs. [16,49,70]. Here, the two spins are realized by the
clockwise (cw) and counterclockwise (ccw) modes in each
ring. To induce a non-Hermitian coupling between the two
spins, we add two waveguide segments evanescently
coupled to the ring resonator shown in Fig. 4(a) [88,89].
Each of the waveguides has a reflecting end and a lossy
end. The cw (ccw) mode leak into the couplers, and in the
designated coupler it gets reflected by the mirror and fed
into ccw (cw), respectively. Each of such a ring is described
by the following coupled-mode equation [82]:

i
d
dt

�
a1
a2

�
¼

� −i 2τ i 2τ e
iϕ1

i 2τ e
iϕ2 −i 2τ

��
a1
a2

�
; ð4Þ

where a1;2 is the wave amplitude of the cw and ccw modes,
respectively, 1=τ is the leakage rate into the couplers, and
ϕ1;2 are the phases accumulated by the wave traveling from
the coupling region to the mirror and back. ϕ1;2 can be
adjusted by tuning the lengths of the coupling waveguides.

The diagonal terms of −2i=τ in Eq. (4) are losses induced
by the couplers, which can be compensated by a pumping
of the gain medium in each ring resonator. The off-diagonal
matrix elements in Eq. (4) give us the desired non-
Hermitian couplings between the cw and ccw modes.
A lattice of coupled ring resonators with non-Hermitian

couplings are shown in Fig. 4(b). Apart from the coupler
waveguides in each ring, the structure is identical to that
used in Ref. [16]. The Hamiltonian of this system takes the
form

H ¼ −t
X
x;y

ðc†xþ1;ye
−i2παyszcx;y þ c†x;yþ1cx;y þ H:c:Þ

þ
X
x;y

c†x;y

� 0 ieiφsμγ
þ
jμj

ie−iφsμγ−jμj 0

�
cx;y: ð5Þ

Here t is the hopping strength between nearest neighbor
modes, cx;y ¼ ðcx;y;↑; cx;y;↓Þ is the annihilation operator for
the two spins on each site. The first line of the Hamiltonian
describes a square lattice under a uniform magnetic field as
described in the Landau gauge. α ¼ p=q is the magnetic
flux through each lattice unit cell, and p and q are
incommensurate integers. The second line in Eq. (5) is
the non-Hermitian coupling, constructed through the gen-
eral recipe Eq. (3). Here, φ is an arbitrary phase,
μ ¼ f½yþ ðq − 1Þ=2�mod qg − ðq − 1Þ=2, sμ is the sign
of μ, γ�0 ¼ 0, and fγþ;−

1;2;…;ðq−1Þ=2g is a set of arbitrary real

numbers.
We simulate the structure with a magnetic flux of 1=3,

and the photonic lattice is shown in Fig. 4(b). We adjust the
in-ring couplers such that the non-Hermitian coupling
coefficients for the three sublattice sites are 0, iγ, and
−iγ, respectively. We calculate the band structure of this
system in a stripe geometry that is periodic in x and finite in
y with 300 cells. The results are plotted in Fig. 5. For this
calculation, we assume t ¼ 1 and γ ¼ 0.3, whereas the
threshold for the bulk PT phase transition is found
numerically to be γ ≈ 0.7. Again, although pumping is

(a) (b)

FIG. 4. Schematic of the coupled ring resonator arrays. (a) A
ring resonator with two coupler waveguides inside. Each coupler
waveguide has a lossy port on one end, and is reflecting on the
other end. 1=τ is the leakage rate into the couplers from the ring.
ϕ1;2 are the phases accumulated by waves traveling from the
coupling region to the mirror and back, which can be adjusted by
changing the waveguide length. (b) A lattice of coupled ring
resonator arrays creating a QSH system with effective magnetic
flux of 1=3. The lattice structure is identical to that of Ref. [16]
except for the added waveguide couplers inside the ring reso-
nators. The effective coupling induced by each coupler is marked
aside the couplers. The effective phase of the linking rings for
ccw waves are also marked on the linking rings.

(a) (b)

FIG. 5. Calculated band structure of the QSH system with non-
Hermitian couplings in Fig. 4(b). The real and the imaginary parts
of the eigenenergies are plotted in (a) and (b), respectively. The
bulk bands are colored in blue, while the edge states in red. The
location where edge states enter the PT -broken phase is marked
by the black arrows.
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introduced throughout the ring-resonator arrays, gain only
manifests on the edge but not in the bulk. Thus, same as the
Kane-Mele QSH system discussed above, a topological
localization of gain to the edge also occurs. The coupled
ring-resonator array structure in Fig. 4(b) can be imple-
mented through the same fabrication process as in previous
experimental platforms [18,70].
In recent experimental studies of such a semiconductor

ring-resonator setup, the reported topological gap was
about 1 nm [49,67,70]. This leads to a 14 cm−1 modal
gain differential between edge and the bulk [82].
Furthermore, the edge dominant mode with the highest
gain becomes a lossless dark mode in the absence of
pumping, whereas all other modes are lossy in this case.
The fact that this edge mode is decoupled from the lossy
ports guarantees the potential for low-threshold lasing.
In conclusion, we have shown that a uniform non-

Hermitian topological material can have complex eigen-
values only in the edge states but not in the bulk. Such a
topological edge-gain effect is protected by the bulk top-
ology and PT symmetry, which lead to different PT
phases in the bulk and on the edge. This effect can be
generally induced in any topological material that contains
two gapped subsystems, with a total of four bands or more.
Such a separation of non-Hermitian phases between the
bulk and the edge adds to the understanding of non-
Hermitian topology. Our result provides the gain and loss
control on the edge that is independent of the bulk, thus can
be useful in various applications of non-Hermitian topo-
logical edge states. The designing of topological lasers
can also benefit from this effect. In contrast to existing
theoretical models for topological lasers, our construction
is explicitly reciprocal. Furthermore, as gain is topologi-
cally localized to the edge, a nondegenerate lasing state is
defined globally without the need of selective pumping.
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Note added.—Recently, we became aware of a recent paper
[90] that showed the topological gain effect in a specific
system. The general condition to construct such an effect
was not discussed in Ref. [90].
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