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ABSTRACT: Gradient-based inverse design in photonics has
already achieved remarkable results in designing small-footprint,
high-performance optical devices. The adjoint variable method,
which allows for the efficient computation of gradients, has played a
major role in this success. However, gradient-based optimization has
not yet been applied to the mode-expansion methods that are the
most common approaches to studying periodic optical structures
such as photonic crystals. This is because, in such simulations, the
adjoint variable method cannot be defined as explicitly as in standard
finite-difference or finite-element time- or frequency-domain
methods. Here, we overcome this gap through the use of automatic
differentiation, which is a generalization of the adjoint variable
method to arbitrary computational graphs. We implement the plane-
wave expansion and the guided-mode expansion methods using an
automatic differentiation library, and we show that the gradient of any simulation output can be computed efficiently and in parallel,
with respect to all input parameters. We then use this implementation to optimize the dispersion of a photonic crystal waveguide,
and the quality factor of an ultrasmall cavity in a lithium niobate slab. This extends photonic inverse design to an entirely new class of
simulations, and more broadly highlights the importance that automatic differentiation could play in the future for tracking and
optimizing complicated physical models.
KEYWORDS: inverse design, photonic crystals, nanophotonics, resonators, waveguides

■ INTRODUCTION

Tremendous flexibility in the control of the flow of light can be
achieved by exploiting the vast number of degrees of freedom
in photonic devices with wavelength-scale (or smaller) feature
sizes. This flexibility promises the realization of compact and
highly efficienct integrated devices, which is becoming
increasingly important for future photonic and optoelectronic
technologies. To take advantage of the degrees of freedom in
photonic devices, the field of photonic inverse design has
emerged,1 in which an optimization algorithm is used to
automate the photonic design process toward a specified
device performance, as characterized by an objective function.
This has led to demonstrations of compact devices for routing,
wavelength multiplexing, and spatial-mode converters.2−5 In
addition, inverse design has been successfully extended to
several nonlinear optical devices.6−8

Gradient-based optimization is probably the most widely
used technique in photonic inverse design. In such a technique,
within each iteration, one first computes the gradient of the
objective function, with respect to all the tunable parameters of
the device. One then varies the parameters along the gradient
direction to improve the performance of the device. Under-

pinning gradient-based inverse design is the adjoint variable
method (AVM), which allows the gradient of a scalar objective
function to be efficiently computed, with respect to many
parameters of the device.9−11 AVM can be straightforwardly
implemented when the optical devices are simulated by solving
a linear system of equations of the form

̂ =Ae b

where Â is the system matrix, e the electromagnetic field
distribution in the device to be solved for, and b is the
excitation source. In such a case, the gradient has a very
straightforward physical interpretation as the interference
between forward and backward fields. Such a physical
interpretation is useful conceptually, but more importantly, it
allows for the numerical implementation to use the same solver
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for both the forward and backward simulations. Thus, once a
simulation code is set up for the forward simulation, very little
additional effort is required to implement the backward
simulation. Therefore, the mathematical form of the backward
simulation for computing the gradients is typically derived
analytically and hard-coded.
However, there are scenarios in optical device simulations

where the dependence of the objective function on the device
parameters is more complex. For example, in the design of
photonic crystals, one often solves an eigenvalue problem Âe =
λe, where λ is an eigenvalue and e is the field of the
corresponding eigenstate. The objective function is then
expressed in terms of a mathematical function of some of
the eigenvalues and eigenmodes. This has been done in the
case when Â is just the finite-difference matrix describing the
Maxwell problem on a spatial grid;12,13 however, in a mode-
expansion method, the matrix Â itself will typically have some
functional dependence on the structural parameters. This is
determined by the definition of the expansion basis and could
be highly nontrivial, and must be taken into account in the
gradient. Other scenarios that can complicate the dependence
of the final objective function on the physically tunable
parameters include complex parametrizations of the simulation
domain, or complex objective functions reflecting multiple
goals and/or constraints. Considering the most general
combinations of parametrization, simulation, and objective
function definition, explicit by-hand implementation of the
backward gradient computation can become difficult or even
infeasible. Therefore, there is a need to systematically
implement AVM for arbitrary dependency of the objective
function on the device parameters.
In the context of computational science, automatic differ-

entiation (AD) is the application of the adjoint variable
method to arbitrary computational graphs. Within an AD-
enabled programming framework, a software developer only
needs to define the forward computation, while the backward
computation is generated automatically by tracing program
execution or ahead of time via source code analysis. At the
heart of an AD framework are gradient-aware elementary
functions, which, in essence, can each be represented in terms
of their own individual adjoint variable problem, much like the
explicitly defined backward simulations used in optical inverse
design. However, the key advantage of an AD framework lies in
its ability to flexibly compose such elementary functions to
build far more complex computations with end-to-end gradient
support.
Over the past several decades, automatic differentiation has

been explored across many contexts.14−19 However, in recent
years, the growing interest in machine learning, and particularly
gradient-based model training, has driven the development
modern automatic differentiation libraries. Several examples
include Autograd,20 PyTorch,21 TensorFlow,22 Zygote,23 and
JAX.24 While these libraries have been primarily applied to
machine learning, their application to problems in computa-
tional physics has only recently been explored.25−29 In the
context of optical inverse design, an AD-enabled finite
difference frequency domain (FDFD) simulation framework
was recently proposed,28 which leveraged AD for flexible
composition of optimization objective functions and device
parametrizations. Similar goals have motivated the develop-
ment of application-specific differentiable graph frameworks
for optical inverse design.30 However, an unexplored
application of modern AD frameworks within optical inverse

design is to enable gradient computations through optical
simulations that do not have straightforwardly defined
backward problems. An example class of such simulations are
mode expansion methods used for computing the photonic
bands of periodic optical structures.
In this work, we present a differentiable implementation of

the two-dimensional (2D) plane-wave expansion (PWE)
method used for simulating a 2D photonic crystal (PhC), as
well as of the guided-mode expansion (GME) method used for
efficiently simulating photonic crystal slabs.31 We demonstrate
that AD allows us to efficiently compute the gradient of a
scalar-valued objective function derived from any output
quantities (e.g., eigenmode dispersion, field profile, and/or
loss rates) simultaneously, with respect to all the input
parameters (e.g., position and size of holes, slab permittivity,
and/or thickness). Our approach is equivalent to an adjoint
variable method for the eigenmodes of periodic structures,
without the need to derive the entire adjoint gradient
computation by hand. Our implementation uses the open
source AD package Autograd,20 which allows for great
flexibility both in the parametrization of the periodic structures
and in the final objective function. Our open-source code has
been made available online.32 We also show two examples of
gradient-based optimizations performed using this method. In
the first example, we optimize the dispersion of a PhC
waveguide toward several target curves, which is an important
problem for nonlinear optics33 and slow light34 applications. In
the second example, we optimize the quality factor (Q) of a
PhC cavity in a lithium niobate slab with an ultrasmall volume,
which can be useful for many applications in integrated
photonics.35

■ THEORETICAL PRELIMINARIES

The results presented in this paper are at the intersection of
two concepts: automatic differentiation and mode-expansion
methods for electromagnetic simulations. In this section, we
lay down a theoretical foundation for both concepts. We note
that, throughout this paper, we denote column (“contra-
variant”) vectors in bold (e.g., v) and 2D arrays (matrices)
using a format such as M̂ . Derivatives of scalar functions, with
respect to a vector (d/dv), are therefore row (“covariant”)
vectors. Similarly, derivatives of vectors, with respect to
vectors, are matrices, and so on for tensors of higher rank.

Automatic Differentiation. The field of automatic
differentiation (AD) has existed for more than five
decades18,36,37 and has covered a wide range of applications.
Our goal here is only to provide a summary targeted at readers
with little or no prior knowledge of the topic, and hence many
details are omitted for the sake of brevity. The first important
point is that AD is a computer programming paradigm and not
a purely mathematical construct. That is to say, unlike
symbolic differentiation, AD is inextricably connected to an
underlying computer program, which can be generically
represented as a computational graph, as shown in Figure 1a.
In the schematic, the rectangles denote generic functions
included in a programming library, while vectors xi contain all
the inputs and outputs of these functions. Thus, the forward
computation of the program illustrated in Figure 1a performs
the operations
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An AD library then allows the user to compute the exact
Jacobian dxi/dxj for any i, j, using the rules of differentiation
and some knowledge of the partial derivatives of each
operation (more disucssion on this topic is given below).
For example, in the case of the computational graph of Figure
1a, we have
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which is, in itself, a computational graph that can be traced by
the program. A crucial point in AD is that this tracing is
dependent on the order in which the products in eq 1 are
computed (the “accumulation” of the Jacobian), which also
affects the computational complexity of evaluating eq 1. There
are two main approaches. The first one is to work from right to
left, which is called forward-mode (FM), because the Jacobian
accumulation, illustrated in Figure 1b, follows the arrows of the
original computational graph of Figure 1a. This is conceptually
straightforward, as, for example, fan-out of the outputs (e.g., x2
in Figure 1(a)) leads to fan-out of the derivative, while fan-in
of the inputs (e.g., x3 and x4 in Figure 1a) leads to the addition
of derivatives. The alternative approach is to work from left to
right in eq 1, which is called reverse mode (RM), since the

computational graph (Figure 1c) flows in the opposite
direction of the arrows in Figure 1a. In this case, everything
is reversed, and fan-out of the output leads to the addition of
the input derivatives (∂x5

(1)/∂x2 and ∂x5
(2)/∂x2 in Figure 1c),

while fan-in of the inputs leads to splitting of the output
derivatives (∂x5/∂x4 and ∂x5/∂x3 in Figure 1c). More generally,
a combination of FM and RM is possible, but this is not
typically used, because of the extra complexity.
The construction of the computational graph for evaluating

the derivatives is one of the main components of an AD library,
and there are various ways in which it can be implemented.
The specifics of this lie beyond the scope of our discussion, but
the important point is that once the graph is constructed, the
derivative computation in both forward mode (FM) and RM
accumulation becomes a sequence of elementary building-
block operations, which we discuss in more detail below.
The FM derivative computation corresponding to Figure 1a

is shown in Figure 1b. There, brown arrows indicate gradient
flow (i.e., input and output of partial derivatives ∂xi/∂xj), while
blue arrows indicate inputs from the forward computation (i.e.,
xi). We see that the primitive building block of the forward-
mode computation in Figure 1b is the operation
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Notice that, in eq 2, the right-most differentiation always has
x1 in the denominator. Then, computing dx5/dx1 in our
example requires N1 separate evaluations of the graph of Figure
1b, where N1 is the number of elements in x1. As a general rule,
the computational time of forward-mode AD scales linearly
with the number of input parameters. In many implementa-
tions (including Autograd), this is made explicit by considering
the forward accumulation of a single derivative vector ∂xj/∂x,
and associating a Jacobian-vector product (JVP) function to
every function f(x), such that

= ∂
∂

x f x v
f
x

vjvp( , ( ), )
(3)

This is essentially the directional derivative of a vector-
valued function f in the direction of v. The vector v that enters
eq 3 is a single column of the Jacobian ∂xj/∂x1 that appears in
eq 2. Given a set of functions with correspondingly defined jvp-
s, arbitrarily complex programs can be differentiated using
forward-mode AD.
The RM derivative accumulation for the same computation

is shown in Figure 1c. We see that the primitive building block
is the operation
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Here, the left-most differentiation always has x5 in the
numerator. Then, computing dx5/dx1 in our example requires
N5 separate evaluations of the graph shown in Figure 1c, and,
as a general rule, the computational time of RM AD scales
linearly with the number of outputs of the program. One
possible implementation of eq 4 is to associate a vector-
Jacobian product (VJP) to every function f(x), such that

= ∂
∂

x f x v v
f
x

vjp( , ( ), ) T
(5)

Figure 1. (a) An example computer program represented as a
computational graph. (b) Forward-mode (FM) differentiation graph
associated with panel (a). (c) Reverse-mode (RM) differentiation
graph associated with panel (a). In panels (b) and (c), the blue arrows
denote inputs from the forward computation of panel (a).
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There are two crucial differences between FM and RM AD.
First, regardless of the implementation, the computational time
for dxo/dxi scales with No when using RM and with Ni when
using FM. Here, the “output” vector xo and the “input” vector
xi can be any of the variables along the computational graph,
i.e., any one of x1, x2, ..., x5 in the example of Figure 1a. Thus,
when No ≫ Ni, FM is much faster than RM, and vice versa if
Ni ≫ No. Since optimization problems typically have a large
number of input parameters and a single scalar-valued
objective function as output, RM AD is then substantially
better for these problems. This explains the ubiquitous use of
backpropagation in machine learning and of the adjoint
variable method in engineering (both are specific examples of
RM AD). However, the second difference works against RM
AD, and can sometimes be a limiting factor. Specifically, note
that all intermediate results from the forward computation
(blue arrows in Figures 1b and 1c) are needed for the
derivative computation in both FM AD and RM AD. Since the
forward-mode AD can be done in parallel with the forward
computation, these do not need to be stored beyond every
individual step. In contrast, the reverse-mode computation can
only start after the forward computation is complete, and it
requires that all intermediate results are stored. This could lead
to a significantly higher memory requirement, which has
motivated the development of checkpointing schemes;38

however, a detailed discussion of such schemes is beyond
the scope of this paper. That being said, the computational
time advantage of reverse-mode AD is so compelling that the
typical approach is to accommodate its memory disadvantage
in some way.
The Autograd library is API-compatible with a large subset

of the NumPy and SciPy libraries.39,40 Thus, complex
programs that include algebraic operations, array manipu-
lations, and flow control can be traced and automatically
differentiated with ease. The end user only needs to write the
forward computation (as in Figure 1a), and the differentiation
is handled automatically. This gives enormous flexibility in
defining objective functions and parametrizations in numerical
simulations and optimizations. In addition, external functions
can also be included if the JVP and/or VJP can be defined. We
will illustrate this below with a specific example of a function
that will be needed for the guided-mode expansion.
Furthermore, this same example captures the essence of the
AVM for finite-difference frequency-domain electromagnetic
simulations for both linear and nonlinear systems.9−11,28

Assume that the output xo of an operation is defined through
a set of constraints written most generally as

=f x x( , ) 0i o (6)

We assume that (i) f has the same dimensionality as xo and (ii)
a solution (not necessarily unique) exists and can be found
through some iterative numerical method. Then, xo is an
implicit function of the inputs xi; using the differentiation rule
for implicit functions, we get
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where [∂f/∂xo]
−1 is the matrix inverse of the square Jacobian

matrix ∂f/∂xo. Since we are mostly interested in RM AD, we
will illustrate the VJP computation for this function, which is
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Thus, the output vo of the VJP can be found using the
auxiliary variable va that is found as the solution to the linear
system of equations

∂
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a i
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and reads

= ∂
∂

v v
f
xo a

T

i (10)

Note that vo has the same dimension as xi, while vi and va
have the same dimension as xo, since input and output
dimensions are switched in RM AD.
The essence of the adjoint variable method for an

electromagnetic finite-difference frequency domain simulation
is captured by eqs 9 and 10. In such a simulation, we have a
discretized real-space domain and an input vector xi = ϵ
defining the dielectric permittivity at every point. The output is
the corresponding electric field xo = e at every point, which is
obtained by solving for f(ϵ, e) = 0, where f defines the Maxwell
problem. For a linear electromagnetic system, f(ϵ, e) = Â(ϵ)e
− b, with Â(ϵ) being the matrix defining the single-frequency
linear Maxwell’s equations on a discretized spatial grid, and b is
a current source term.9−11 In the case of, e.g., Kerr-type
nonlinearity, f(ϵ, e) = Â(ϵ, e)e − b and a nonlinear numerical
solver is required.28 However, the VJP in both cases works in
exactly the same way, as defined in eq 10. The auxiliary variable
va is called the adjoint field in the AVM terminology in
photonics. This is because, for a linear system, ∂f/∂e = Â, and
eq 9 can be interpreted as a Maxwell problem for fields va
propagating in an adjoint system described by ÂT (which is the
same as Â for reciprocal materials). However, more generally,
forward and adjoint variables would typically obey different
equations and cannot be interpreted on the same footing.
Also note that any mathematical operation can be framed as

a constraint, e.g., xo = xi
2 is equivalent to f(xI,xo) = xi

2 − xo = 0.
Therefore, any VJP can be derived through the implicit
function theorem and eqs 6−10. In that sense, RM AD is
sometimes derived within the framework of Lagrange multi-
pliers, which end up corresponding to the adjoint variables.37

In conclusion, we wish to point out that automatic
differentiation, and specifically RM AD, is more than just a
numerical subtlety with limited importance. On the contrary,
when considering optimization problems, the method is
computationally faster than both numerical differentiation
(i.e., finite-difference methods) and symbolic differentiation
(deriving by hand, and evaluating the final expression for the
derivative). The improvement is due to the use of intermediate
“adjoint” variables. The second important advantage of AD is
splitting operations into elementary building blocks, which
allows arbitrarily complex programs to be differentiated. For
these reasons, the development and use of backpropagation,
which corresponds to reverse-mode AD, has been the key
driver of the recent machine learning revolution,18 and we
believe that it will be a key component of tackling optimization
problems in physics and engineering.

Mode Expansion Methods. In this section, we review the
general idea of mode expansion methods applied to Maxwell’s
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equations. The plane-wave expansion and the guided-mode
expansion are both specific examples of the formalism we
introduce below.
In the absence of free charges and currents, Maxwell’s

equations can be written as an eigenvalue problem for the
electric (E) and magnetic (H) fields with harmonic time-
dependence,41 E(r, t) = E(r)e−iωt, H(r, t) = H(r)e−iωt. If we
further assume a linear, isotropic, lossless, nondispersive, and
nonmagnetic medium, which is a good approximation for
many real-world materials, the eigenvalue equation can be
written for H alone:

ωΘ̂ ≡ ∇ ×
ϵ

∇ × =
Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ c
H r

r
H r H r( )

1
( )

( ) ( )
2

2
(11)

together with the constraint ∇ ·H(r) = 0. In eq 11, ϵ(r) is the
relative dielectric permittivity distribution that fully defines the
system. For a known magnetic field profile, the electric field
can be found through

ω
=

ϵ
∇ ×ic

E r
r

H r( )
( )

( )
(12)

For a closed system in which all fields decay as |r| → ∞, or
for a periodic system, we can define an inner product on the
space of magnetic field functionals as

∫=ν μ ν μ
†H H r H r H r( , ) d ( ) ( )

(13)

such that the operator Θ̂H r( ) is Hermitian, i.e., Θ̂ *ν μH H( , ) =

Θ̂ν μH H( , ). For an open system, the integration of eq 13 is not
well-defined, and correctly defining an inner product is an
active area of study that goes beyond the scope of this work.42

Here, we will assume either periodic or decaying fields, and
compute concrete examples of eq 13 in the sections on PWE
and GME below.
The idea of a mode expansion method is to express the

eigenstates of eq 11 for an arbitrary operator Θ̂ on the basis of
the eigenstates of a different operator Θ̂0, i.e.,

∑=
μ

μ μcH r H r( ) ( )
(14)

where ωΘ̂ =μ μ μcH H( / )0
2 2 and ∇ ·Hμ = 0 holds for all μ. In

other words, the modes Hμ are solutions to Maxwell’s
equations for a given structure, which is typically simple to
solve, e.g., ϵ(r) = 1 everywhere (free space). Because the
problem is Hermitian, the eigenmodes form an orthonormal
set, such that

δ=ν μ νμH H( , ) (15)

Using this, plugging eq 14 into eq 11, multiplying by *νH and
taking the inner product on both sides, we get

∑ ∑ ωΘ̂ =ν
μ

μ μ
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and so

∑ ω=
μ

νμ μ νc
c

c
2

2
(17)

This is an eigenproblem for the expansion coefficients cμ
with matrix elements νμ = Θ̂ν μH H( , ).
We note that the expansion of eq 14 is exact only when Hμ

forms a complete set, and all modes are included in the
summation. However, any starting structure Θ̂0 has an infinite
number of eigenmodes, with increasing magnitude of the
eigenfrequency. In practice, the summation will thus always be
truncated to a finite subset of the basis functions. Apart from
that, the set of plane waves used is complete, and can be
thought of as Fourier decomposition of a vector-valued
function. On the other hand, in the guided-mode expansion
method, we restrict the summation to the fully guided slab
modes, which is an incomplete set. The method is thus only
approximate, but it has been shown to compare well to first-
principles simulations for many different structures, with a
much faster computational speed.43−45

■ PLANE-WAVE EXPANSION
The plane-wave expansion method for simulating periodic
structures is well-known both in photonics and in quantum
mechanics and other domains. Here, we will nevertheless
review the fundamentals, because this helps with the
understanding of the guided-mode expansion, as well as the
understanding of our automatic differentiation implementation
of the two methods.

Method Description. In this paper, we focus on 2D PWE,
in which the simulation domain is assumed to be periodic in
two directions and translationally invariant in the third. One
example of such a structure is illustrated in Figures 2a and 2b

and consists of an array of dielectric rods in air, assumed to be
infinitely extended in the z-direction. Most generally, the Bloch
theorem then states that the eigenmodes of the structure can
be written as

ρ ρ= ̃ρ·H H( ) e e ( )ik z i
kk

k
k,

z
z (18)

where the Bloch momentum k and the position vector ρ lie in
the xy-plane, and ρH̃ ( )kk, z

is periodic in xy with the 2D lattice
periodicity. As is usual in the study of 2D PhCs, we will focus

Figure 2. (a) A 2D photonic crystal composed of dielectric rods in air.
The rods form a square lattice in the xy-plane, and are assumed to be
infinite in the z-direction. (b) Cross-section in the xy-plane showing
the lattice constant a and rod radius r. The shaded square shows the
primitive cell of the crystal. (c) Reciprocal lattice for this crystal, with
reciprocal lattice vectors separated by 2π/a in both directions. The
shaded square shows the primitive cell, i.e., the first Brillouin zone,
and the high-symmetry points Γ, X, and M are noted. (d)
Computational graph for the 2D plane-wave expansion.
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on modes with kz = 0 and drop that label. The method is easy
to generalize for nonzero kz.
The inner product (eq 13) for this 2D problem reads

∫ ρ ρ ρ=ν μ ν μ
†

S
H H H H( , )

1
d ( ) ( )

S (19)

where S denotes the primitive cell in the xy-plane. With this,
we can apply the general mode-expansion procedure. Because
of the reflection symmetry, with respect to the xy-plane, all
modes can be separated into transverse electric (TE) and
transverse magnetic (TM) polarizations, even in the case of
arbitrary in-plane permittivity ϵ(ρ). The plane-wave basis is
just the solution to the free-space system with a relative
permittivity of ϵ(ρ) = 1 everywhere. This can be written as

ρ = ρ·H H( ) ep i
k k

k , where = ̂zHp
k for TE polarization, while

= ̂eHp
k k for TM polarization. Here, z ̂ and ek̂ are unit vectors

pointing in the z-direction and in the direction orthogonal to
both z and k, respectively. Thus, the p-polarization eigenstates
for an arbitrary 2D PhC can be written as

∑ρ = ρ
+

+ ·cH G H( ) ( ) ep p p i
k

G
k G k

G k( )

(20)

where G is a reciprocal lattice vector, as shown in Figure 2c. As
derived in the Supporting Information (SI), the matrix
elements defined in eq 17 for the two polarizations read

η= [ + · + ′ ]′ ′k G k G( ) ( )g g G G,
TE

, (21)

η= | + || + ′|′ ′k G k Gg g G G,
TM

, (22)

where we define g = G + k, and the 2D Fourier transform of
the inverse of the permittivity distribution by the matrix
elements

∫η ρ
ρ

=
ϵ

ρ
′

− − ′ ·

S
1

d
1
( )

e
S

i
G G

G G
,

( )

(23)

In the expansion of eq 20, we only include a discrete set of
plane waves defined by the reciprocal lattice vectors, because
the Fourier components in eq 23 are zero for any plane-wave
combination that is noncommensurate with the lattice
periodicity.
Numerically, we truncate the expansion up to some

maximum value Gmax, such that |G| ≤ Gmax. Furthermore, we
note that it has been shown that, because of the discontinuous
nature of the permittivity, a significantly better convergence of
the expansion is achieved if the Fourier transform ϵ(G) of ϵ(ρ)
is computed first, and η ̂ is computed as the matrix inverse of
the matrix ϵG,G′ = ϵ(G − G′).46,47 A high-level computational
graph for the full plane-wave expansion is then presented in
Figure 2d, showing the three main operations needed to
compute the eigenmodes of an arbitrary 2D PhC. These are
Fourier transform of the real-space permittivity to compute
ϵ(G), matrix inversion to compute ηG,G′, and matrix

diagonalization of ̂ as defined in eqs 21 and 22 for the
two polarizations. Next, we describe the automatic differ-
entiation aspect of the PWE method.
Automatic Differentiation. As emphasized in our

discussion on automatic differentiation, RM AD is the method
of choice for optimization problems, which is why, from this
point forward, we only focus on this method. Thus, we discuss
the derivative propagation through the operations of Figure 2d
in reverse order, starting with the matrix eigensolve.

Generically, we denote the forward operation as a function
̂eigh( ) that takes a Hermitian matrix ̂ as an input and

returns a set of eigenvalues Ei and associated eigenvectors ci,
such that

̂ = ∀E ic c ,i i i (24)

In the current version of Autograd (1.3), the eigh operation
is only implemented for real symmetric matrices. Therefore, we
extended the library by defining the RM AD step for the
eigensolve of a Hermitian matrix. This operation can be
derived using matrix algebra,48,49 or using eqs 6 and 7 and
treating eq 24 as a constraint. Below, we give yet another, more
intuitive, derivation, using perturbation theory from quantum
mechanics.
We assume that there are no degenerate eigenvalues.

Degenerate cases can also be handled by perturbation theory,
but this requires extra considerations and is neglected for
simplicity. Then, the eigenvalues can be labeled (e.g., sorted by
magnitude), and a derivative of a given eigenvalue, with respect
to a given matrix element, is

λ
λ

∂
∂

=
̂ + ̂ − ̂

μν λ

μν

→

E E E
lim

( 1 ) ( )i i i

0 (25)

where E ( )i is the ith eigenvalue of matrix ̂ , and μ̂ν1 is a

matrix with the same dimension as ̂ with zeros everywhere
apart from the μ, ν element, which is set to 1. Since we take a
limit of λ → 0, we can use first-order perturbation theory as an
exact result:

λ λ̂ + ̂ = ̂ + ̂μν μν
†E E c c( 1 ) ( ) 1i i i i (26)

Therefore,

λ
λ

∂
∂

=
̂

= *
μν λ

μν
μ ν

→

†E
c c

c c
lim

1i i i
i i

0
, ,

(27)

where ci,μ is the μth element of ci. The VJP for the eigensolve
can then be written as a matrix with elements

∑̂ ̂ = *μν μ νvc cvvjp( , eigh( ), )
i

i i i, ,
(28)

We can also use first-order perturbation theory to compute
derivatives of the eigenvectors:

∑ ∑

λ
λ

λ

λ

∂
∂

=
+ ̂ −

=
̂

−
=

*

−

μν λ

μν

λ

μν μ ν

→

→ ≠

†

≠E E

c c

E E

c c c

c c
c c

lim
( 1 ) ( )

lim
1

( )

i i i

j i

j i

i j
j

j i

j i

i j
j

0

0

, ,

(29)

and write the corresponding VJP.
Something very important to notice is the fact that the

derivative of an eigenvalue is dependent only on its
corresponding eigenvector. On the other hand, the derivative
of an eigenvector as defined in eq 29 is dependent on all other
eigenvectors of the matrix, which could have important
implications. In particular, if an objective function is dependent
on any of the eigenvectors, all of them are needed to propagate
the gradient exactly. However, computing all eigenvectors is
difficult when using iterative methods that return only a few
eigenvectors.50 Still, the dependence of the denominator in eq
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29 on Ei − Ej means that eigenvectors with very different
eigenvalues should contribute less to the gradient. It is also
possible to define the gradient propagation for the eigenvectors
in a way that is exact without the need for other eigenvectors,51

and we have also included this option in our software
package.32

The Hermitian eigenvalue decomposition is the only
operation that required extending the existing Autograd API.
All other operations, including several low-level algebraic
operations that are not shown in Figure 2d, are already
supported by Autograd. For completeness, here, we briefly
discuss the other two main operations of the computational
graph shown in Figure 2d. First, the AD step through the
matrix inverse can be derived starting from dÂ−1/dp =
−Â−1dÂ/dpÂ−1, and the VJP reads48

̂ ̂ ̂ ̂ = − ̂ ̂ ̂− − −A A A V A V Avjp( , ( ), )1 1 T 1
(30)

where ̂V is now a matrix of the same size as Â. This is a
convenient way to write the expression that can be assumed
without loss of generalitystrictly speaking, we can always
“flatten” Â and ̂V into vectors to more rigorously match the
formalism that we defined for AD. Second, regarding the
Fourier transform, one way that this can be implemented in
practice is to define ϵ(ρ) on a discrete grid in real space, and
use a discrete Fourier transformation. In that case, we simply
have ρϵ = ̂ϵDG( ) ( ), where D̂ is the corresponding Fourier
transform matrix, and the VJP through this linear operation is
straightforward, = D̂v v io

T T .
In our implementation,32 we take a different approach to the

parametrization of the permittivity. Namely, we define the
structure through shape primitives, such as circles and
polygons. Then, the Fourier transform can be computed
through simple algebraic operations31,52 that are straightfor-
ward to differentiate through. For circles, the Fourier transform
also includes the Bessel function of the first kind, whose
derivative is analytic and the function is already included in
Autograd. In the following section, we demonstrate this
parametrization in practice, as well as the entire formalism
developed thus far.
Waveguide Optimization. In this section, we apply the

PWE and AD formalism developed in the previous sections to
a practical design problem. Namely, we optimize the dispersion
ω(k) of a PhC waveguide to match various predefined target
forms. Dispersion engineering is generally important for many
practical applications, including nonlinear phase matching33

and generation of frequency combs.53 Here, for illustrative
purposes, we use generic target dispersion curves. The starting
structure is shown in Figure 3a and consists of a row of missing
holes in a hexagonal lattice of dielectric rods in air. The
underlying bulk PhC has a broad band gap for TM-polarized
modes, and the line defect introduces a guided band inside the
band gap, as shown in Figure 3b. Note that the guided band
(blue) is folded because we use a supercell of size Lx = 5a in
the propagation direction, such that, within a supercell, there
are sufficient degrees of freedom for optimization purposes.
In Figure 3c, we show three different target dispersion curves

for which we will optimize the waveguide. These are defined by
a set of increasing Fourier components in k-space as

ω̅ = −k k L( ) 0.01 cos( )x x x1 (31)

ω̅ = − +k k L k L( ) 0.01 cos( ) 0.004 cos(2 )x x x x x2 (32)

ω̅ = − + −k k L k L k L( ) 0.01 cos( ) 0.004 cos(2 ) 0.002 cos(3 )x x x x x x x3

(33)

where we define ω̅ as the dimensionless reduced frequency
ωa/2πc. We take only cosine components, because, due to
time-reversal invariance, the dispersion must have zero
derivative at the high-symmetry Brillouin zone points. The
three target curves are illustrated in Figure 3c, on top of the
middle of the five guided bands of the waveguide, which is the
one we optimize to match the targets. We allow for an arbitrary
offset in frequency, and define the objective function as a
mean-square error (MSE):

∫ ω ω ω= | ̅ − ⟨ ̅⟩ − ̅ |k k kd ( ) ( )
L

x x i x
0

2x

(34)

where ω̅ k( )x is the reduced frequency of the waveguide band,
and ω⟨ ̅⟩ denotes ω̅ k( )x averaged over kx. As optimization
parameters, we take the position and radii of the three rows of
rods around the waveguide, as illustrated in Figure 3d. The
shifts are applied symmetrically, with respect to the y = 0 plane,
such that there are 45 free parameters total (Δx, Δy, and Δr
for 15 rods on one side of the waveguide). The electric field
intensity (|Ez|

2) for one of the guided modes of the starting
waveguide is also shown in Figure 3d.
The results of the three separate optimizations for ω̅ k( )i x are

shown in Figure 4. In Figure 4a, we show the dispersion
optimized to match ω̅ k( )x1 , and in Figure 4b, we show the
corresponding final structure and the electric field intensity of
one of the guided modes. We use the Limited-memory

Figure 3. (a) Photonic crystal waveguide made by a missing row of pillars in a hexagonal lattice of dielectric pillars of relative permittivity ϵ = 9 and
radius r = 0.2a, with a being the lattice constant. The white region of width Lx = 5a in the x-direction denotes the supercell used in the plane-wave
expansion simulations. (b) Photonic bands of the structure; waveguide bands are shown in blue. (c) Expanded view over the middle of the
waveguide-band region, and three different target dispersion curves that we optimize for. (d) Electric field intensity for the mode at Lxkx/π = 0.5 for
the blue band in panel (c). The positions and radii of the pillars marked in red are optimized to achieve the target dispersion curves in panel (c).
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Broyden−Fletcher−Goldfarb−Shanno (LBFGS) algo-
rithm54,55 to perform the optimization, and the evolution of
the objective function with epochs (iterations) is shown in
Figure 4c. We note that, as discussed previously, the
“backward” propagation of the gradient, with respect to all
45 free parameters, requires approximately the same time as
the “forward” computation of the photonic bands of the
structure. The optimization converges quickly to the target
dispersion, with a final MSE below 10−6.
In Figures 4d−f, we show the same results, but for ω̅ k( )x2 .

This more-complicated dispersion pattern requires a greater
number of optimization iterations (Figure 4f), but the final
result also matches the target function very well, as seen in
Figure 4d. Finally, in Figures 4g−i, we show the same results
for ω̅ k( )x3 . In the previous two optimizations, we used the
unmodified structure of Figure 3d as the initial structure.
However, as the target dispersion becomes harder to achieve,
this yields a poor convergence in the optimization for ω̅ k( )x3 ,
with a final MSE of 8.9 × 10−5. Thus, in Figures 4g−i, we show
the result obtained using, as a starting configuration, the
optimal structure obtained for ω̅ k( )x2 , i.e., the one shown in
Figure 4e. This illustrates the fact that, as the optimization
problem becomes more complicated, the results of a gradient-
based optimization can be strongly dependent on the starting
parameters. This can be remedied by gradually increasing the
complexity of the optimization, as done here, or by running the

optimization with several randomly initialized starting
structures.
Initializing the optimization with the structure of Figure 4e

brings the MSE down to 2.0 × 10−5 (panel (i)). Still, as shown
in Figure 4g, the waveguide band gets close to the target one,
but the match is not perfect. This is to be expected, as the
higher-k components correspond to smaller- and smaller-scale
fluctuations of the real-space permittivity. This could be
improved by allowing for rods of arbitrary shapes, or by
increasing the supercell size Lx, therefore decreasing the
maximum kx in units of 1/a.

■ GUIDED-MODE EXPANSION
The guided-mode expansion is a method for simulating three-
dimensional (3D) layered periodic structures (PhC slabs) that,
in many cases, has a computational complexity similar to the
2D plane-wave expansion, as it was formulated in ref 31. The
method is approximate since the basis modes do not form a
complete set, but it has already been shown to agree very well
with first-principle methods for modes that are well-confined in
the PhC region (weakly radiating in the claddings).31,43−45

The key idea is to use a smart basis that captures the z-
dependence of such modes analytically. The periodic dielectric
permittivity in the xy-plane then enters through its Fourier
components, just like in the PWE described earlier. Below, we
review the method in detail, and we discuss our AD
implementation. As an original application, we then show an
example optimization of the quality factor (Q) of a PhC slab
cavity in a lithium niobate slab.

Method Description. Our implementation of the GME
generalizes the seminal work of ref 31 to a multilayer
structure,56 as shown in Figure 5a. Along the z-direction,
there are two semi-infinite layers: a lower cladding extending
from z0 to −∞, and an upper cladding extending from zN+1 to
+∞. Between these two semi-infinite layers, we assume N
layers with thickness dj. The claddings and the layers are
described by in-plane permittivity distribution ϵj(ρ), with j =
0, ..., N + 1 (j = 0 for the lower and j = N + 1 for the upper
cladding, and vector ρ denotes the in-plane coordinate). We
allow for arbitrary ϵj(ρ), with the condition that the periodicity
in all layers is the same, as shown by the blue shaded
elementary cell in Figure 5a. The basis set that we use in the
guided-mode expansion is then derived from a multilayer
structure with homogeneous permittivity in each layer, as
shown in Figure 5b. Specifically, each layer has the same
thickness di as the starting structure of Figure 5a, and a
constant relative permittivity given by

∫ ρ ρϵ̅ = ϵ = +
S

j N
1

d ( ) 0 , ..., 1j
S

j (35)

where S is the in-plane elementary cell.
As shown in Figure 5c, the effective homogeneous structure

supports a discrete set of guided bands, as well as a continuum
of modes that are radiative in at least one of the claddings.
Because of the reflection symmetry in the gz-plane, where g is
the in-plane wave-vector, the modes can again be classified as
TE (electric field perpendicular to the gz-plane, odd reflection
symmetry) and TM (magnetic field perpendicular to the gz-
plane, even reflection symmetry). Notice that this classification
is consistent with the PWE definition and the general photonic
crystal literature,41 as TE modes have E-field in the xy-plane
and Ez = 0 everywhere, while TM modes have H-field in the
xy-plane and Hz = 0 everywhere.

Figure 4. (a) Optimized waveguide band with a target band shape
given by ω̅ k( )x1 in Figure 3c (represented by a dashed line here). (b)
The optimized structure and the electric field intensity of the
waveguide mode at Lxkx/π = 0.5. (c) Mean-square error vs
optimization epoch. Panels (d)−(f) are the same as panels (a)−(c),
for the target band shape given by ω̅ k( )x2 in Figure 3(c). Panels (g)−
(i) are the same as panels (a)−(c), for the target band shape given by
ω̅ k( )x3 in Figure 3c.
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In the guided-mode expansion, we write an eigenmode of
the PhC structure of Figure 5a as

∑ ∑=
α

α αcH r H r( ) ( )
p

p pk
G

G g
,

, , , ,
guid

(36)

where we restrict the summation only to the fully guided
modes that lie below the light lines of the claddings (Figure
5c). In eq 36, g = G + k, the G-summation is over reciprocal
lattice vectors, just like in the plane-wave expansion case (see
Figure 2c), α is a band index, and p = TE/TM denotes
polarization. Below, we label the guided mode by a single index
μ that includes g, α and p. Note that the two polarizations are
generally mixed in the photonic crystal because of the ρ-
dependent permittivity, and it is not possible to classify the
PhC modes strictly as TE or TM, since all of the components
of both E and H can be nonzero.
The expressions for the guided mode computation are

derived in detail in the Supporting Information. This expansion
basis also must be normalized, with respect to the scalar
product for this problem, which is defined as

∫ ∫ρ ρ ρ=ν μ ν μ
−∞

∞
†

S
z z zH H H H( , )

1
d d ( , ), ( , )

S (37)

The normalization condition (Hμ, Hμ) = 1 for both
polarizations is also given in the Supporting Information.
The elements of the matrix for diagonalization,

= Θ̂μν μ νH H( , ), can then be computed, and are also
given in the Supporting Information for all the possible
polarization combinations. Just like in the plane-wave
expansion, the permittivity of each layer enters through the

inverse matrix η ̂ ′j G G, , , as defined in eq 23. The eigenvalues of ̂

give the frequencies ωk of the Bloch bands of the photonic
crystal, while the eigenvectors correspond to the cμ coefficients
of eq 36, from which the magnetic field Hk can be computed.
At this stage, the frequencies ωk are purely real, because we

have only included purely guided modes in the system, and ̂
is Hermitian. The final step of the method is to compute the
coupling of the photonic crystal modes to the radiative modes
of the homogeneous structure that lie above the light line
(Figure 5c).
We use perturbation theory to compute the (small)

imaginary components of the eigenmode frequencies of the
PhC structure. These imaginary components correspond to a
loss rate due to resonant coupling to radiating waves outgoing
in the claddings. The decay rate of an eigenvalue ω c/k

2 2 of

matrix ̂ can be computed in first-order time-dependent
perturbation theory31,57 as

∑ ∑ω
π ρ ω− = | | + ′

′ ′ =

i
k
jjjjj

y
{
zzzzzc

k G( , )
p o l u

r o
k

G
k k

2

2
, ,

2

(38)

where ρo is a density of states of the radiative modes,69 and
rk is a matrix element between the PhC mode and a radiative

mode Hr given by

∑= Θ̂ = * × Θ̂
α

μ μcH H H H( , ) ( , )r r
p

rk k
G, , (39)

For radiative modes, the index r includes G, p, and o, where
o denotes if the mode is outgoing in the lower cladding or the
upper cladding, respectively. We note again that, for guided
modes, the index μ includes G, α, and p. Further details on the
radiative rate computation are given in the Supporting
Information. Once the imaginary part ω c( / )2 2 is computed,
the imaginary part of ω can be determined through ω c( / ) =

ω ω+c i c(( ( / ) ( / ))2 2 2 2 1/2, and the quality factor asso-
ciated with a Bloch mode Hk is ω ω=Q ( )/(2 ( ))k k .

Automatic Differentiation. A high-level computational
graph for the GME is presented in Figure 5d. In our discussion
thus far, we have already covered everything that is needed for
the AD of the GME computation. The three green blocks in
Figure 5d are the same as those for the PWE of Figure 2d. The
only difference here is that the Fourier transform and matrix
inversion are done for every layer j = 0, ..., N + 1. The AD step
through the nonlinear solve for the guided modes is done as
defined in eq 7 and is the only nontrivial operation that we
added to Autograd to enable the GME.
The guided-mode frequency ωμ is the solution to the

implicit function

ω ϵ =D d( , , ) 022 (40)

(defined in the Supporting Information) where ϵ is a vector
containing all average permittivity values ϵj̅, and d is a vector
containing all layer thickness values dj. This implict function is

Figure 5. (a) A layered photonic crystal structure consisting of lower
and upper semi-infinite claddings, and N layers of thickness d1, ..., dN
between. Each layer is described by relative permittivity ϵj(ρ), where ρ
is the position in the xy-plane (cf. panel (b)). The permittivity is
assumed to have the same in-plane periodicity in every layer, and the
blue shaded square denotes the common elementary cell. (b)
Effective homogeneous system corresponding to panel (a), where
the permittivity ϵj̅ of each layer is the elementary-cell average of ϵj(ρ).
(c) Frequency ω vs wave vector magnitude g of the photonic bands of
a homogeneous structure as in panel (b), with two layers having a
thickness of d1/a = 0.3, d2/a = 0.5 (a is a length unit), and
permittivities of ϵ̅ = 20 , ϵ̅ = 101 , ϵ̅ = 122 , ϵ̅ = 13 . Discrete guided
bands can be found below the lower-cladding light line ω =c g/ / 2 .
Above that line, there is a continuum of modes radiating either in the
lower cladding only, or in both. (d) Computational graph of the
guided-mode expansion method.
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actually a simple version of eq 7, in that D22 and ω are scalars
and no matrix inversion is needed. Thus, once a solution ωμ is
found, the reverse-mode AD step, with respect to ϵ, is defined
as

ω
ω
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(41)

and similarly for d. To implement this, we use Autograd to
define a differentiable computation of D22, which is computed
as a product of matrices, as defined in eq (S15) in the
Supporting Information. We then use Autograd to automati-
cally compute ∂D22/∂ωμ, ∂D22/∂ϵ, and ∂D22/∂d, using these
quantities to perform the computation defined in eq 41 and
continue the gradient accumulation through the main part of
the computation.
The computation of the matrix for diagonalization from the

guided modes and the Fourier components of the permittivity
involves a large number of algebraic operations, which we
outlined in the Supporting Information. However, these are
conceptually simple to differentiate and are all supported by
Autograd. The same is true for the radiative overlap elements,
which is the final step of the forward computation shown in
Figure 5d. However, this once again highlights the importance
of using AD in handling complex computational algorithms:
apart from the fundamental speed advantage offered by RM
differentiation, we also profit immensely from the fact that the
differentiation is split into elementary building blocks, and the
extremely long and complicated derivative accumulation is
done automatically. In the following section, we finally apply
this to a practical problem: optimizing a photonic crystal
cavity.
Cavity Optimization. Photonic crystal cavities are

attractive because they can confine light to volumes close to
the diffraction limit.58 Furthermore, through small modifica-
tions of the structure, quality factors exceeding 10 million have
been experimentally demonstrated in silicon PhC slabs

suspended in air.59 Recently, lithium niobate (LN) has
emerged as an extremely versatile material for integrated
photonics applications. However, LN has a much lower
refractive index than silicon (n = 2.21 vs n = 3.48, respectively)
at wavelengths of λ ≈ 1.55 μm. The significantly lower index
contrast, with respect to the air holes and claddings, makes the
design of high-Q PhC cavities in LN much more challenging.
Recently, a design with a theoretical Q = 1.5 × 106 was
proposed,60 with an associated mode volume is V = 2.43(λ/
n)3, which is defined as

∫
=

| | ϵ

[| | ϵ ]
V

r E r r

E r r

d ( ) ( )

max ( ) ( )
m

mr

2

2
(42)

Here, we demonstrate the optimization of a LN photonic
crystal cavity with a simultaneously higher Q and lower V than
the design described in ref 60.
The starting cavity is shown in Figure 6a and is based on a

triangular lattice of circular holes in an LN slab. We use the
L4/3 design,58 in which four holes (marked in blue) are
introduced in place of the three holes of the regular lattice.
This type of defect results in a tightly confined cavity mode, as
shown in Figure 6b. For the underlying PhC, we use the same
parameters as in ref 60: lattice constant a = 620 nm, slab
thickness d = 270 nm, and hole radius r = 145 nm. The starting
cavity of Figure 6b has Q = 6100, and a mode volume V =
0.61(λ/n)3. In Figure 6c, we show one-quarter of the supercell
used in the simulation (the positive-x and positive-y quadrant).
As optimization parameters, we use the positions of the holes
marked in red, and all holes are moved symmetrically, with
respect to the x- and y-axes. Note that this also means that the
holes that lie on the x-axis are not shifted in the y-direction,
and vice versa for the holes on the y-axis. Thus, there are a total
of 70 free parameters Δx, Δy to optimze, and the objective
function to be maximized is simply the quality factor of the
resonator, Δ Δ = Qx y( , ) .

Figure 6. (a): Schematic of a L4/3 photonic crystal cavity in a lithium niobate slab in air. The cavity is defined by four holes (marked in blue)
introduced in place of the three holes of the regular lattice. (b): Electric field |Ey|

2 of the fundamental mode of the starting cavity. (c): One quadrant
of the supercell used in the simulation. The positions of the red holes are the free parameters used in the optimization. The holes closest to the
center of the cavity are labeled by their x, y position index. (d): Magnitude of the gradient of the quality factor with respect to hole position vs
integrated field intensity on the surface of the corresponding hole. The labels refer to the corresponding holes in panel (c). (e): Optimized high-Q
cavity. The position of the holes of the starting structure are shown in white dashed lines. (f): Quality factor vs optimization epoch.
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Before optimizing, we inspect the gradient of the quality
factor, with respect to each hole for the starting structure. This
is done both as a check that the gradients computed using
automatic differentiation are correct, and to investigate the
sensitivity of the Q to the position of each of the holes. In
Figure 6d, we show the combined magnitude of the gradient |
dQ/dx| + |dQ/dy| for every hole, plotted versus the field
intensity at that hole,

∮ ρ ρ= | |I zEd ( , )h
h

1
2

(43)

where the integration is along the contour of the hole, and the
field E(ρ, z1) is taken at the center of the slab. As expected,
there is a clear correlation between the sensitivity of the Q-
factor to the displacement of a hole and the proximity of that
hole to the center of the cavity, where the field intensity of the
eigenmode is the highest. In the same panel, we also compare
the AD gradient with values computed numerically using the
finite-difference method, i.e., by slightly perturbing each
parameter one by one. We observer that the values match
perfectly. The difference is that 70 extra simulations were
required to get the numerical values, while the RM AD
computation after the initial Q is computed required
approximately the same time as the FM simulation.
In Figure 6e, we show the final optimized cavity, and in

Figure 6f, we show the evolution of the quality factor with
optimization steps. The optimal values of all 45 parameters
(Δx, Δy) are given in the Supporting Information. The LBFGS
optimization is close to converged after 100 epochs, and it
produces a cavity mode with a GME-computed quality factor
of Q = 9.7 × 106 and a mode volume of V = 0.49(λ/n)3. The
mode volume is smaller than that of the starting structure,
because we restricted the two holes closest to the center
(labeled “00” and “10” in Figure 6c) to only shift inward
toward the cavity center. This can be seen in Figure 6e, where
we also show the positions of the holes for the unoptimized
cavity. As is common in PhC cavity optimization and can be
seen there, very small changes to the structure can result in
drastic changes in the quality factor. We also computed the Q
of the final cavity design using a first-principles finite-difference
time-domain simulation in Lumerical FDTD Solutions, and
found Q = 2.4 × 106. This is slightly lower than the GME-
computed result, and the discrepancy can be attributed to the
fact the GME is an approximate method. In any case, this Q
value is still higher than that of ref 60, and it confirms the
success of the GME optimization.

■ DISCUSSION AND CONCLUSION
The guided-mode expansion is an invaluable tool in the study
of photonic crystal slabs. Although approximate, the method
has been shown to agree well in comparison to first-principle
simulations in several different structures, while being
computationally faster.31,43−45 Here, we used the method
and our differentiable implementationto improve the quality
factor of a small-volume photonic crystal cavity by more than 2
orders of magnitude, compared to the starting structure. In the
past, there have been various approaches to PhC cavity
optimization. Heuristic optimizations of the quality factor have
been extremely successful in silicon slabs,59 but they become
challenging in lower-index materials, or when other features,
such as the mode volume, must also be taken into account.
Traditional gradient-based inverse design techniques have been
tried on the problem of designing high-Q small-volume

cavities, both using topology optimization61,62 and by
optimizing the hole positions of a PhC resonator.63 However,
in both cases, the result was only moderately successful,
especially with respect to the quality factor. This is
fundamentally linked to the use of finite-difference fre-
quency-domain simulations, which have significant difficulties
in resolving sharp resonances that shift in frequency during the
course of optimization. In contrast, global optimization
methods using the GME have already proven extremely useful
when applied to PhC cavities,43,58,64,65 both, because of the
speed of the individual computation and because high-Q
resonances actually represent the condition under which the
approximation of the method works best. Here, we have
moved one step further, leveraging our differentiable
implementation of GME to perform a gradient-based
optimization. This leads to a significantly lower number of
simulations needed to obtain an optimal structure. For
comparison, a recent work65 reports on the application of
GME to a similar cavity design by using a global optimization
procedure on a comparable number of parameters, which
converged to a result that is comparable with ours (18 times
larger Q but 3.5 times larger V, in a structure with a slightly
larger refractive index contrast in ref 65). Crucially, the global
optimization required 800 000 evaluations, while our gradient-
based optimization converges after 131 function and gradient
evaluations (equivalent to 262 forward-only evaluations in
terms of computational time), which highlights the computa-
tional advantage of AD for this problem.
In periodic structures, the guided-mode expansion is

particularly useful for the study of quasi-guided modes above
the light line, which are difficult to isolate in first-principles
finite-difference methods (time domain or frequency domain).
Therefore, we anticipate that one direction in which our
software package will prove invaluable is the study of bound
states in the continuum,66 which can find applications for on-
chip zero-index metamaterials,45 or for enhanced nonlinear
frequency conversion.64 Another potential application is the
optimization of the dispersion of exciton-polaritons in
nanostructures.67 We can also envision using GME to optimize
the dispersion of a PhC slab waveguidesimilarly to what we
demonstrated here with plane-wave expansion, but for a fully
3D structure. This has recently been done using inverse design
applied to the eigenmodes of the real-space finite-difference
matrix defining Maxwell’s equations.68 However, this has a
significant computational cost, and it was furthermore only
limited to modes that lie below the light line. In contrast, the
GME method is extremely fast. For example, in our GME
optimization, we used a computational space of size 16 × 10
elementary cells, and the converged simulation requires a time
period on the order of 10 min on a personal computer. A
waveguide simulation would have a smaller supercell and, thus,
be even faster. In addition, the optimization is not restricted to
modes below the light line, and the radiation losses can be
included in the objective function, as was done for example in
ref 44.
In conclusion, we have extended the paradigm of gradient-

based inverse design to two mode expansion methods that are
widely used in the study of photonic crystals. Namely, we have
implemented the 2D plane-wave expansion and the guided-
mode expansion methods in a way that allows for efficient
gradient computation using reverse-mode (RM) automatic
differentiation (AD). Furthermore, this naturally brings great
flexibility in defining structure parametrizations and objective
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functions. We have also made our software publicly available32

for future use by the community. More broadly, our paper
demonstrates the power of AD for generic physical
simulations, and it highlights the fact that the sophisticated
AD libraries that have been developed in the past decade20−24

hold great promise for future large-scale inverse design of
physical structures.
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